Towards Automated Threat Elicitation from the AI Act

S. Di Mauro, M. Raciti, G. Bella

SECAI 2025

26/09/25 – Toulouse, FR

Gaps and Contributions

Threat modelling must map system safeguards to complex, *multi-domain regulations* to ensure **legal compliance**

Manual extraction of requirements from lengthy legislative texts is slow and error-prone

Our work:

Takes a **Human Artificial Intelligence (HAI)** approach to automate *threat elicitation*

Applies such approach to the Al Act

- 1. Introduction
- 2. Methodology
- 3. Application on Al Act
- 4. Validation
- 5. Conclusions

Methodology in a Nutshell

2. Methodology

M. Raciti - SECAI 2025

- 1. Introduction
- 2. Methodology → <u>Asset Extraction</u>
- 3. Application on Al Act
- 4. Validation
- 5. Conclusions

Asset Extraction

Based on Natural Language Processing (NLP) and Clustering, with an LLM-based refinement

SpaCy Noun Extraction → Word Embeddings → K-means → LLM Refinement

Asset Extraction - NLP

<u>SpaCy Noun Extraction</u> \rightarrow Word Embeddings \rightarrow K-means \rightarrow LLM Refinement

"Organizations shall ensure the integrity of personal data by implementing encryption and access controls."

["Organizations", "integrity", "personal data", "encryption", "access controls"]

Asset Extraction - Clustering

SpaCy Noun Extraction → Word Embeddings → K-means → LLM Refinement

- Compute **embeddings** for each noun and run **K-means**
- **Let up** Human analyst chooses optimal k via silhouette score \rightarrow here k = 3

Cluster A: ["encryption", "access controls"]

Cluster B: ["personal data", "integrity"]

Cluster C: ["Organizations"]

Asset Extraction - Refinement

SpaCy Noun Extraction → Word Embeddings → K-means → **LLM Refinement**

- **Set thresholds:** st1 = 0.6 and st2 = 0.8 for semantic similarity
- Filter: drop any noun whose average similarity to its cluster-mates < st1
- Merge: if two clusters' centroids cosine-sim > st2
- Select: LLM selects the assets (Prompt 1)

Assets cluster 1: ["access controls", "encryption"]

Assets cluster 2: ["personal data", "data integrity"] → selected as "assets"

- 1. Introduction
- 2. Methodology → Threat Elicitation
- 3. Application on Al Act
- 4. Validation
- 5. Conclusions

Threat Elicitation

Article-Level Analysis:

- Split document into articles
- Human analyst choses N
- For each article, run LLM *N×* to extract asset-threat pairs (Prompt 2)

Consolidation:

- \longrightarrow Within-article merging (Prompt 3) \rightarrow reduce redundancy
- \bigoplus Global merging (Prompt 4) \rightarrow unified threat list

Threat Elicitation - Before Merge

Article #	Extracted Threats
1	Unauthorised access due to missing authentication; Sensitive data exposed via public endpoints; Weak session management allowing token reuse.
2	SQL injection risk in user profile update; Lack of input validation on form fields.
3	Error messages disclose stack traces; Verbose logs reveal internal paths.

Threat Elicitation - After Merge

Article #	Consolidated Threat	
1	Inadequate authentication and session controls lead to unauthorised access and potential data exposure.	
2	Improper input handling exposes the system to injection attacks and unexpected behaviors.	
3	Excessive error information leakage may aid attackers in understanding system internals.	

- 1. Introduction
- 2. Methodology
- 3. Application on Al Act
- 4. Validation
- 5. Conclusions

Experimental Testing to Evaluate Thresholds

Table 1: Threshold	l values	used in	the	experimental	evaluation.
--------------------	----------	---------	-----	--------------	-------------

Threshold	Name	Values
Detection	threshold_values	{0.10, 0.15, 0.20, 0.25, 0.30}
Similarity	similarity_threshold_values	{0.50, 0.60, 0.70}
Merge similari	ty merge_similarity_threshold_value	es {0.70, 0.75, 0.80}

Performance Comparison of the Runs

Extracted Assets

Table 2: Sample of extracted assets from AI Act

Assets					
SYSTEMS	SYSTEM	SECURITY			
MONITORING	DETECTION	CAMERAS			
SURVEILLANCE	THREATS	CYBERSECURITY			
ALARM	CYBER	CYBERATTACKS			
BIOMETRICS	OPERATORS	SERVICES			
ACCESS	PROVIDERS	NETWORK			
INTERNET	MESSAGING	TELECOMMUNICATION			
INSURANCE	MODELS	MODELLING			
PROCESSING	DATA	STORING			
SOFTWARE	OUTPUTS	ALGORITHMS			

Extracted Threats

We extracted a total of **38 Al-related threats**

Table 3: Sample of extracted threats from AI Act

Table 3: Sample of extracted threats from Al Act				
Threat	Explanation			
AI Misuse that may cause harm, infringe on rights, or manipulate behaviors without proper regulation and oversight.				
Discrimination and Bias arising from biased AI algorithms and datasets, resulting in discriminatory outcomes that violate fundamental rights and ethical standards.	result in discriminatory outcomes, violating			
Lack of Transparency caused by opaque AI decision- making processes that hinder understanding, trust, and the ability to rectify AI behaviors, increasing mis- use risks.	the ability to understand, trust, and rectify			
Privacy Violation from improper handling of personal and biometric data by AI systems, infringing on indi- viduals' privacy rights and allowing data misuse.				
Adversarial Attacks targeting AI systems with adversarial inputs designed to deceive or manipulate outputs, compromising reliability and security.				

Beyond a Technical Catalogue

Privacy Violation resonates with **Articles 10–11** on data governance and quality, which demand lawful handling of personal and biometric data

Discrimination and Bias reflects **Article 10(3) and Recital 44**, mandating that datasets and outputs avoid discriminatory effects

Inadequate Human Oversight is directly addressed in **Article 14**, which requires that high-risk Al systems incorporate mechanisms for meaningful human control.

- 1. Introduction
- 2. Methodology
- 3. Application on Al Act
- 4. Validation
- 5. Conclusions

Questionnaire Design

As **cybersecurity practitioners** and **AI ethicists**, we are all aware of these facts:

- Artificial Intelligence depends on large-scale data availability
- Big data enhances AI model precision, adaptability, and real-time processing
- The use of personal data in AI raises security, legal, and governance challenges

How relevant do you find the following threat with respects to those facts?

Validation Outcomes

Limitations

Thresholds may vary in other domains → *experimental runs*

LLMs are **non-deterministic** → *multiple runs to converge*

Generalisation is limited → *future work*

Limited set of responders → *future work*

- 1. Introduction
- 2. Methodology
- 3. Application on Al Act
- 4. Validation
- 5. Conclusions

Conclusions

We advanced a HAI-powered threat elicitation methodology leveraging NLP and LLMs

We elicited a total of 38 Al-related threats from the Al Act

Future work:

- Explore LLM fine-tuning and support to multi-lingual documents
- Extend the methodology to other regulatory frameworks
- Refine the validation through larger and more diverse expert panels

Thanks for your attention!

For more information or questions:

https://tsumarios.github.io/

@tsumarios

https://linkedin.com/in/marioraciti

Non-malicious QR (maybe)